- 1. The parameters of the circuit shown in Figure Q1 are $V_{DD} = 5$ V, $R_1 = 520$ k Ω , $R_2 = 320$ k Ω , $R_D = 10$ k Ω , and $R_{Si} = 0$. Assume transistor parameters of $V_{TN} = 0.8$ V, $K_n = 0.20$ mA/V², and $\lambda = 0$.
 - (a) Determine the small-signal parameters $g_{\rm m}$ and $r_{\rm o}$.
 - (b) Find the small-signal voltage gain v_0/v_i .
 - (c) Calculate the input and output resistances R_i and R_o .

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure Q1

Solution:

(a)
$$V_{GS} = \left(\frac{R_2}{R_1 + R_2}\right) V_{DD} = \left(\frac{320}{520 + 320}\right) (5) = 1.905 \text{ V}$$
$$I_{DQ} = 0.20 (1.905 - 0.8)^2 = 0.244 \text{ mA}$$
$$g_m = 2\sqrt{K_n I_{DQ}} = 2\sqrt{(0.2)(0.244)} = 0.442 \text{ mA/V}$$
$$r_o = \infty$$
(b)
$$A_v = -g_m R_D = -(0.422)(10) = -4.22$$
(c)
$$R_i = R_1 || R_2 = 520 || 320 = 198 \text{ K}$$
(d)
$$R_o = R_D = 10 \text{ K}$$

2. Consider the circuit shown in Figure Q1. Assume transistor parameters of $V_{\text{TN}} = 0.8 \text{ V}$, $K_n = 0.20 \text{ mA/V}^2$, and $\lambda = 0$. Let $V_{\text{DD}} = 5 \text{ V}$, $R_i = R_1 || R_2 = 200 \text{ k}\Omega$, and $R_{\text{Si}} = 0$. Determine R_D , R_1 , and R_2 such that $I_{\text{DQ}} = 0.5 \text{ mA}$ and the *Q*-point is in the center of the saturation region. Find the small-signal gain v_o/v_i .

Solution:

At transition point, $I_D = 1 \text{ mA}$

$$I_{D} = K_{n} (V_{GSt} - V_{IN})^{2} = K_{n} (V_{DS} (\text{sat}))^{2}$$

$$1 = 0.2 (V_{DS} (\text{sat}))^{2} \Rightarrow V_{DS} (\text{sat}) = 2.236 \text{ V}$$
Want $V_{DSQ} = \frac{5 - 2.236}{2} + 2.236 = 3.62 \text{ V}$

$$R_{D} = \frac{5 - 3.62}{0.5} = 2.76 \text{ K}$$

$$0.5 = 0.2 (V_{GSQ} - 0.8)^{2} \Rightarrow V_{GSQ} = 2.38 \text{ V}$$

$$V_{GSQ} = \left(\frac{R_{2}}{R_{1} + R_{2}}\right) V_{DD} = \frac{1}{R_{1}} (R_{1} \parallel R_{2}) V_{DD}$$
So $2.38 = \frac{1}{R_{1}} (200) (5) \Rightarrow R_{1} = 420 \text{ K} \text{ and } R_{2} = 382 \text{ K}$

$$A_{v} = -g_{m} R_{D}$$

$$g_{m} = 2\sqrt{K_{n} I_{DQ}} = 2\sqrt{(0.2)(0.5)} = 0.6325 \text{ mA/V}$$

$$A_{v} = -(0.6325) (2.76) |$$

$$= -1.75$$

3. The parameters for the transistor in the circuit shown in Figure Q3 are $V_{\text{TN}} = 0.6 \text{ V}$, $K_n = 0.5 \text{ mA/V}^2$, and $\lambda = 0$. (a) Determine the quiescent values of I_{DQ} and V_{DSQ} , (b) Find the small-signal voltage gain v_0/v_1 .

Solution:

(a)

$$V_{G} = \left(\frac{R_{2}}{R_{1} + R_{2}}\right)(10) - 5 = \left(\frac{250}{250 + 1000}\right)(10) - 5 = -3 \text{ V}$$

$$I_{D} = \frac{(V_{G} - V_{GS}) - (-5)}{2} = K_{n} (V_{GS} - V_{DV})^{2}$$

$$-3 - V_{GS} + 5 = 2(0.5)(V_{GS} - 0.6)^{2}$$

$$2 - V_{GS} = V_{GS}^{2} - 1.2V_{GS} + 0.36$$

$$V_{GS}^{2} - 0.2V_{GS} - 1.64 = 0$$

$$V_{GS} = \frac{0.2 \pm \sqrt{(0.04) + 4(1.64)}}{2} = 1.385 \text{ V}$$

$$I_{DQ} = (0.5)(1.385 - 0.6)^{2} \Rightarrow I_{DQ} = 0.308 \text{ mA}$$

$$V_{DSQ} = 10 - (0.308)(10 + 2) \Rightarrow V_{DSQ} = 6.30 \text{ V}$$
(b)

$$A_{v} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S}}$$

$$g_{m} = 2\sqrt{K_{n}I_{DQ}} = 2\sqrt{(0.5)(0.308)}$$

$$g_{m} = 0.7849 \text{ mA/V}$$

$$A_{v} = \frac{-(0.7849)(10)}{1 + (0.7849)(2)} \Rightarrow A_{v} = -3.05$$